TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll D
X [ESTADO QUÂNTICO]
A teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetric, teoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.
Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imedi
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetric, teoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.
Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imedi
Resolução de problema de causalidade
T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:
- X
T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a energia cinética relativística funcional de partícula i, e, e são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:
- X
onde é a energia cinética relativística funcional de partícula i, e, e são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :
- X
Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:
- X
ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para este Lagrangiana gerará exactamente as mesmas equações do movimento de e e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]
em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para este Lagrangiana gerará exactamente as mesmas equações do movimento de e e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Movimento browniano
Movimento Browniano ou pedesis (em grego: πήδησις /pɛ̌ːdɛːsis/ "pulando") é o movimento aleatório das partículas suspensas em um fluido (líquido ou gás), resultante da sua colisão com átomos rápidos ou moléculas no gás ou líquido. O movimento Browniano é um dos mais simples processos da estocástica (ou probabilística) de tempo contínuo, e é um limite de ambos os processos mais simples e mais complicados estocásticos (veja passeio aleatório e teorema de Donsker). Esta universalidade está intimamente relacionada com a universalidade da distribuição normal. Em ambos os casos, é muitas vezes conveniência matemática, em vez da precisão dos modelos, que motiva a sua utilização.
O termo "movimento Browniano", nomeado em homenagem ao botânico Robert Brown, também pode se referir ao modelo matemático usado para descrever tais movimentos aleatórios, que muitas vezes é chamado de teoria da partícula.[1] Este modelo tem inúmeras aplicações do mundo real. Por exemplo, flutuações do mercado de ações são frequentemente citados, embora Benoît Mandelbrot rejeitou sua aplicabilidade aos movimentos de preços de ações, em parte, porque estes são descontínuos.[2]
Movimento Browniano ou pedesis (em grego: πήδησις /pɛ̌ːdɛːsis/ "pulando") é o movimento aleatório das partículas suspensas em um fluido (líquido ou gás), resultante da sua colisão com átomos rápidos ou moléculas no gás ou líquido. O movimento Browniano é um dos mais simples processos da estocástica (ou probabilística) de tempo contínuo, e é um limite de ambos os processos mais simples e mais complicados estocásticos (veja passeio aleatório e teorema de Donsker). Esta universalidade está intimamente relacionada com a universalidade da distribuição normal. Em ambos os casos, é muitas vezes conveniência matemática, em vez da precisão dos modelos, que motiva a sua utilização.
O termo "movimento Browniano", nomeado em homenagem ao botânico Robert Brown, também pode se referir ao modelo matemático usado para descrever tais movimentos aleatórios, que muitas vezes é chamado de teoria da partícula.[1] Este modelo tem inúmeras aplicações do mundo real. Por exemplo, flutuações do mercado de ações são frequentemente citados, embora Benoît Mandelbrot rejeitou sua aplicabilidade aos movimentos de preços de ações, em parte, porque estes são descontínuos.[2]
Índice
Conceito
O movimento browniano é o movimento aleatório de partículas num fluido (líquido ou gás) como consequência dos choques entre todas as moléculas ou átomos presentes no fluido. O termo movimento browniano pode ser usado para se referir a uma grande diversidade de movimentos com partículas, com moléculas, e com ambos presentes em estados desde micro até macroscópicos em situações de organização caóticas, semi-caóticas, ou de proporções matemáticas, principalmente em casos de modelagem, todos estes na área denominada Física de partículas.[1]
Esse fenômeno físico que é intrínseco à matéria e aos choques que ocorrem nos fluidos, também pode ser observado com macromoléculas, tendo por exemplo o momento que a luz incide em locais relativamente secos, permitindo que se veja macropartículas "flutuando" em suspensão no ar fazendo movimentos aleatórios. Vulgarmente confunde-se com poeira, entretanto deve-se notar que o ar (o fluido em questão) que pratica o movimento browniano e não as partículas (ou macromoléculas, neste caso poeira) que estão naquele.[1]
Há um padrão pouco explícito em alguns casos deste movimento aleatório que o classifica como um movimento fractal, pois descreve um padrão dinâmico bem definido. Quem primeiro percebeu isso foi Benoît Mandelbrot, matemático francês.
Esse movimento está diretamente ligado com muitas reações em nível celular, como a difusão, a formação de proteínas, a síntese de ATP e o transporte intracelular de moléculas.
Hoje em dia, o movimento browniano serve de modelo na descrição de flutuações que ocorrem nos mais diversos e inesperados tipos de sistemas. Por exemplo, praticamente a mesma descrição e o mesmo tratamento matemático de Einstein podem ser adaptados para descrever flutuações de preços de mercadorias, a condutividade elétrica em metais e a ocorrência de cheias nos rios.[3]
Físicos atualmente estudam tal movimento em relação à Teoria do Caos.
O movimento browniano é o movimento aleatório de partículas num fluido (líquido ou gás) como consequência dos choques entre todas as moléculas ou átomos presentes no fluido. O termo movimento browniano pode ser usado para se referir a uma grande diversidade de movimentos com partículas, com moléculas, e com ambos presentes em estados desde micro até macroscópicos em situações de organização caóticas, semi-caóticas, ou de proporções matemáticas, principalmente em casos de modelagem, todos estes na área denominada Física de partículas.[1]
Esse fenômeno físico que é intrínseco à matéria e aos choques que ocorrem nos fluidos, também pode ser observado com macromoléculas, tendo por exemplo o momento que a luz incide em locais relativamente secos, permitindo que se veja macropartículas "flutuando" em suspensão no ar fazendo movimentos aleatórios. Vulgarmente confunde-se com poeira, entretanto deve-se notar que o ar (o fluido em questão) que pratica o movimento browniano e não as partículas (ou macromoléculas, neste caso poeira) que estão naquele.[1]
Há um padrão pouco explícito em alguns casos deste movimento aleatório que o classifica como um movimento fractal, pois descreve um padrão dinâmico bem definido. Quem primeiro percebeu isso foi Benoît Mandelbrot, matemático francês.
Esse movimento está diretamente ligado com muitas reações em nível celular, como a difusão, a formação de proteínas, a síntese de ATP e o transporte intracelular de moléculas.
Hoje em dia, o movimento browniano serve de modelo na descrição de flutuações que ocorrem nos mais diversos e inesperados tipos de sistemas. Por exemplo, praticamente a mesma descrição e o mesmo tratamento matemático de Einstein podem ser adaptados para descrever flutuações de preços de mercadorias, a condutividade elétrica em metais e a ocorrência de cheias nos rios.[3]
Físicos atualmente estudam tal movimento em relação à Teoria do Caos.
Breve História
O poema didático latino De rerum natura (Sobre a natureza das coisas), escrito por Tito Lucrécio Caro cita:
- Os átomos movem-se num infinito vazio.
- O universo é composto de átomos e vazio, nada mais.
- Devido a sermos compostos de uma sopa de átomos em constante movimento[...].
- As formas de vida neste mundo e nos outros estão em constante movimento, incrementando a potência de umas formas e diminuindo a de outras.
- Os sentimentos percebem as colisões macroscópicas e interacções dos corpos[...]Albert Einstein.
Demonstrando algum conhecimento das sociedades antigas sobre como choques de partículas geram os vários fenômenos que são citados. É de se observar que na época em questão não havia aceitação e nem entendimento unânime sobre a existência de átomos e outros componentes da matéria. A disputa atômica começou com Demócrito e Anaxagoras. Os filósofos se opunham às teorias atômicas, distinguidos pela questão da gota d´água, por exemplo, que deve se dividir repetidamente sem limite, com cada subdivisão preservando as propriedades da original. A escola atômica de Demócrito defendia que as subdivisões não podiam continuar indefinidamente. A doutrina da homogeneidade seguida por Anaxagoras defende que a divisão da gota pode continuar sem término, porque o tamanho do corpo não reflete a natureza da substância.
O poema didático latino De rerum natura (Sobre a natureza das coisas), escrito por Tito Lucrécio Caro cita:
- Os átomos movem-se num infinito vazio.
- O universo é composto de átomos e vazio, nada mais.
- Devido a sermos compostos de uma sopa de átomos em constante movimento[...].
- As formas de vida neste mundo e nos outros estão em constante movimento, incrementando a potência de umas formas e diminuindo a de outras.
- Os sentimentos percebem as colisões macroscópicas e interacções dos corpos[...]Albert Einstein.
- Os átomos movem-se num infinito vazio.
Demonstrando algum conhecimento das sociedades antigas sobre como choques de partículas geram os vários fenômenos que são citados. É de se observar que na época em questão não havia aceitação e nem entendimento unânime sobre a existência de átomos e outros componentes da matéria. A disputa atômica começou com Demócrito e Anaxagoras. Os filósofos se opunham às teorias atômicas, distinguidos pela questão da gota d´água, por exemplo, que deve se dividir repetidamente sem limite, com cada subdivisão preservando as propriedades da original. A escola atômica de Demócrito defendia que as subdivisões não podiam continuar indefinidamente. A doutrina da homogeneidade seguida por Anaxagoras defende que a divisão da gota pode continuar sem término, porque o tamanho do corpo não reflete a natureza da substância.
Descoberta do Movimento Browniano
Em 1827, ao olhar através de um microscópio partículas encontradas em grãos de pólen na água,o biólogo Robert Brown observou que as partículas se moviam através da água, mas não foi capaz de determinar os mecanismos que causaram este movimento. Assim, foi o primeiro a observar cientificamente o movimento que achou se tratar de uma nova forma de vida, pois ainda não se tinha completa ciência da existência de moléculas, e as partículas pareciam descrever movimentos por vontade própria.
Jan Ingenhousz também fez algumas observações do movimento irregular de poeira de carbono em álcool em 1765. Porém, a primeira pessoa a descrever a matemática por trás do movimento Browniano foi Thorvald N. Thiele em 1880 em um artigo no método dos menores quadrados. Isto foi seguido independentemente por Louis Bachelier em 1900 em sua tese de PhD "A Teoria da Especulação".
Átomos e moléculas , posteriormente foram teorizados como os constituintes da matéria e, muitas décadas depois, Albert Einstein publicou um artigo em 1905 que explicava em detalhes precisos como o movimento que Brown tinha observado era o resultado do pólen sendo movido por moléculas de água individuais. Esta explicação deste fenômeno de transporte serviu como a confirmação definitiva de que átomos e moléculas realmente existem, e foi ainda verificada experimentalmente por Jean Baptiste Perrin, em 1908. Perrin foi agraciado com o Prêmio Nobel de Física em 1926 "por seu trabalho sobre a estrutura descontínua da matéria" (Einstein tinha recebido o prêmio cinco anos antes "por seus serviços à física teórica", com citação específica de uma pesquisa diferente). Sendo então que a direção da força de bombardeamento atômico está constantemente mudando, e em diferentes momentos da partícula é atingido mais de um lado do que o outro, levando à natureza aparentemente aleatória do movimento.
Em 1827, ao olhar através de um microscópio partículas encontradas em grãos de pólen na água,o biólogo Robert Brown observou que as partículas se moviam através da água, mas não foi capaz de determinar os mecanismos que causaram este movimento. Assim, foi o primeiro a observar cientificamente o movimento que achou se tratar de uma nova forma de vida, pois ainda não se tinha completa ciência da existência de moléculas, e as partículas pareciam descrever movimentos por vontade própria.
Jan Ingenhousz também fez algumas observações do movimento irregular de poeira de carbono em álcool em 1765. Porém, a primeira pessoa a descrever a matemática por trás do movimento Browniano foi Thorvald N. Thiele em 1880 em um artigo no método dos menores quadrados. Isto foi seguido independentemente por Louis Bachelier em 1900 em sua tese de PhD "A Teoria da Especulação".
Átomos e moléculas , posteriormente foram teorizados como os constituintes da matéria e, muitas décadas depois, Albert Einstein publicou um artigo em 1905 que explicava em detalhes precisos como o movimento que Brown tinha observado era o resultado do pólen sendo movido por moléculas de água individuais. Esta explicação deste fenômeno de transporte serviu como a confirmação definitiva de que átomos e moléculas realmente existem, e foi ainda verificada experimentalmente por Jean Baptiste Perrin, em 1908. Perrin foi agraciado com o Prêmio Nobel de Física em 1926 "por seu trabalho sobre a estrutura descontínua da matéria" (Einstein tinha recebido o prêmio cinco anos antes "por seus serviços à física teórica", com citação específica de uma pesquisa diferente). Sendo então que a direção da força de bombardeamento atômico está constantemente mudando, e em diferentes momentos da partícula é atingido mais de um lado do que o outro, levando à natureza aparentemente aleatória do movimento.
Resultados físicos posteriores
Theodor Svedberg fez importantes demonstrações do movimento Browniano em colóides e Felix Ehrenhaft, em partículas de prata no ar.
Jean Perrin realizou experimentos para testar os novos modelos matemáticos e seus resultados publicados finalmente colocaram um fim na disputa de dois mil anos sobre a existência dos átomos e moléculas.E, por esses trabalhos, ele foi agraciado com o prêmio Nobel de Física de 1926.
Alguns anos depois do trabalho de Einstein, o matemático Norbert Wiener provou que a trajetória browniana tem comprimento infinito entre dois pontos quaisquer. O caminho traçado pela partícula é tão demorado que, se houvesse um tempo infinitamente longo, ela percorreria todo o plano, sem deixar de passar por nenhum ponto. Tecnicamente se diz que, contrariando as aparências, o caminho percorrido pela partícula browniana não é uma linha (com dimensão 1), mas é uma superfície (com dimensão 2)! E tem mais: Não pense que a trajetória da partícula browniana parece ser irregular porque o microscópio não tem um aumento suficiente para mostrar os detalhes da curva. Nada disso. Com um microscópio mais potente veríamos mais detalhes, realmente, mas a curva seria tão angulosa e irregular quanto antes[4].
Theodor Svedberg fez importantes demonstrações do movimento Browniano em colóides e Felix Ehrenhaft, em partículas de prata no ar.
Jean Perrin realizou experimentos para testar os novos modelos matemáticos e seus resultados publicados finalmente colocaram um fim na disputa de dois mil anos sobre a existência dos átomos e moléculas.E, por esses trabalhos, ele foi agraciado com o prêmio Nobel de Física de 1926.
Alguns anos depois do trabalho de Einstein, o matemático Norbert Wiener provou que a trajetória browniana tem comprimento infinito entre dois pontos quaisquer. O caminho traçado pela partícula é tão demorado que, se houvesse um tempo infinitamente longo, ela percorreria todo o plano, sem deixar de passar por nenhum ponto. Tecnicamente se diz que, contrariando as aparências, o caminho percorrido pela partícula browniana não é uma linha (com dimensão 1), mas é uma superfície (com dimensão 2)! E tem mais: Não pense que a trajetória da partícula browniana parece ser irregular porque o microscópio não tem um aumento suficiente para mostrar os detalhes da curva. Nada disso. Com um microscópio mais potente veríamos mais detalhes, realmente, mas a curva seria tão angulosa e irregular quanto antes[4].
Outras Pesquisas
Outro francês, Louis Bachelier, em sua tese de doutoramento apresentada em 1900, cinco anos antes do artigo de Einstein, desenvolveu praticamente toda a teoria do movimento aleatório, obtendo expressões semelhantes às que seriam depois obtidas por Einstein. No entanto, Bachelier não descrevia um sistema físico, como partículas suspensas em água, mas as flutuações das ações de uma bolsa de valores. Por essa razão, seus resultados passaram inteiramente despercebidos pelo,s físicos da época. Hoje, sabe-se que o tratamento teórico dessas flutuações serve para explicar inúmeros fenômenos que ocorrem em áreas completamente distintas, como a física, a biologia, a economia e as ciências políticas. A observação aparentemente inocente de Robert Brown revelou-se muito mais importante do que parecia do que quando foi relatada pela primeira vez. [5]
Outro francês, Louis Bachelier, em sua tese de doutoramento apresentada em 1900, cinco anos antes do artigo de Einstein, desenvolveu praticamente toda a teoria do movimento aleatório, obtendo expressões semelhantes às que seriam depois obtidas por Einstein. No entanto, Bachelier não descrevia um sistema físico, como partículas suspensas em água, mas as flutuações das ações de uma bolsa de valores. Por essa razão, seus resultados passaram inteiramente despercebidos pelo,s físicos da época. Hoje, sabe-se que o tratamento teórico dessas flutuações serve para explicar inúmeros fenômenos que ocorrem em áreas completamente distintas, como a física, a biologia, a economia e as ciências políticas. A observação aparentemente inocente de Robert Brown revelou-se muito mais importante do que parecia do que quando foi relatada pela primeira vez. [5]
Movimento Browniano na Física
A primeira teoria do Movimento Browniano na Física foi publicada por Einstein em sua tese de doutoramento no ano de 1905, publicada em "Annalen der Physik". Inicialmente, Einstein analisou as equações de Navier-Stokes para o escoamento de um fluido incompressível, obtendo:[6]
Onde,
= Viscosidade efetiva na presença de soluto;
= Viscosidade do solvente puro;
= Parte do volume total que é ocupada pelo soluto.
Assim, com base em grandezas conhecidas, como a massa molar e a densidade, tem - se que:
Desse modo, as únicas incógnitas são o raio da partícula () e o Número de Avogrado (). O cientista buscou ainda outro modo de relacionar e , obtendo um resultado matemático em que relaciona a difusão (D) com a temperatura e a viscosidade do fluido, de forma:[7]
Onde,
D = Coeficiente de Difusão
R = Constante universal dos gases
T = Temperatura Termodinâmica
= Raio das partículas
= Viscosidade do solvente puro
Por meio do Movimento Browniano, Einstein possibilitou a observação de flutuações de partículas que anteriormente possuíam desvio quadrático médio muito pequeno. A base de sua teoria é tida como a semelhança do comportamento de soluções e do comportamento de suspensões diluídas, onde existe uma relação do coeficiente de difusão com a viscosidade, somado à uma dedução probabilística da equação de difusão.[7] Diante desses cálculos, foi elaborado para o Movimento Browniano o deslocamento quadrático médio na direção "x" e o tempo de observação "t", tal que:[8]
No caso tridimensional, devido a isotropia, temos que:
Alguns anos após as descobertas de Einstein, em 1908, Paul Langevin, assim como outros cientistas, buscou a generalização das fórmulas já criadas. Assim, Langevin definiu que o Movimento Browniano de uma partícula que esteja fora de um campo de força conservativo pode ser escrito como uma equação diferencial, sendo:[9]
Onde,
= Viscosidade do meio;
= Velocidade da particula;
= Força aleatória.
Vale ressaltar que é uma força que mantêm a agitação das partículas em suspensão, sendo atribuída a força gerada pelas moléculas do fluido nas partículas suspensas.
Langevin demonstrou que a variância da velocidade é dada por:
Onde,
= Constante a ser calculada;
= Viscosidade do meio;
= Tempo.
Desse modo, para tempo longos, a função exponencial tende a zero, assim:
Levando em conta fatores como a energia cinética média das partículas, Langevin demonstra que:
Onde,
= Constante de Boltzmann;
T = Temperatura do meio externo.
Dessa maneira, para tempos suficientemente longos, a teoria de Langevin é equivalente as propostas de Einstein sobre o Movimento Browniano.
A primeira teoria do Movimento Browniano na Física foi publicada por Einstein em sua tese de doutoramento no ano de 1905, publicada em "Annalen der Physik". Inicialmente, Einstein analisou as equações de Navier-Stokes para o escoamento de um fluido incompressível, obtendo:[6]
Onde,
= Viscosidade efetiva na presença de soluto;
= Viscosidade do solvente puro;
= Parte do volume total que é ocupada pelo soluto.
Assim, com base em grandezas conhecidas, como a massa molar e a densidade, tem - se que:
Desse modo, as únicas incógnitas são o raio da partícula () e o Número de Avogrado (). O cientista buscou ainda outro modo de relacionar e , obtendo um resultado matemático em que relaciona a difusão (D) com a temperatura e a viscosidade do fluido, de forma:[7]
Onde,
D = Coeficiente de Difusão
R = Constante universal dos gases
T = Temperatura Termodinâmica
= Raio das partículas
= Viscosidade do solvente puro
Por meio do Movimento Browniano, Einstein possibilitou a observação de flutuações de partículas que anteriormente possuíam desvio quadrático médio muito pequeno. A base de sua teoria é tida como a semelhança do comportamento de soluções e do comportamento de suspensões diluídas, onde existe uma relação do coeficiente de difusão com a viscosidade, somado à uma dedução probabilística da equação de difusão.[7] Diante desses cálculos, foi elaborado para o Movimento Browniano o deslocamento quadrático médio na direção "x" e o tempo de observação "t", tal que:[8]
No caso tridimensional, devido a isotropia, temos que:
Alguns anos após as descobertas de Einstein, em 1908, Paul Langevin, assim como outros cientistas, buscou a generalização das fórmulas já criadas. Assim, Langevin definiu que o Movimento Browniano de uma partícula que esteja fora de um campo de força conservativo pode ser escrito como uma equação diferencial, sendo:[9]
Onde,
= Viscosidade do meio;
= Velocidade da particula;
= Força aleatória.
Vale ressaltar que é uma força que mantêm a agitação das partículas em suspensão, sendo atribuída a força gerada pelas moléculas do fluido nas partículas suspensas.
Langevin demonstrou que a variância da velocidade é dada por:
Onde,
= Constante a ser calculada;
= Viscosidade do meio;
= Tempo.
Desse modo, para tempo longos, a função exponencial tende a zero, assim:
Levando em conta fatores como a energia cinética média das partículas, Langevin demonstra que:
Onde,
= Constante de Boltzmann;
T = Temperatura do meio externo.
Dessa maneira, para tempos suficientemente longos, a teoria de Langevin é equivalente as propostas de Einstein sobre o Movimento Browniano.
Analogia do Marinheiro bêbado
Uma maneira simples de compreender o processo de difusão do Movimento Browniano é o passeio ao acaso em uma dimensão, que pode ser exemplificado pelo "problema do marinheiro bêbado".
Um marinheiro bêbado andando em linha reta, no eixo X, partindo de um poste dá sempre passos do mesmo tamanho. Tendo a possibilidade de caminhar para frente ou para trás. Qual será a sua distancia do poste após N passos?
Sendo a posição após n passos. temos então:
O que resulta em:
, mas
ou seja:
Sendo:
N - o número de passos dados
l - o tamanho dos passos
Na física, o coeficiente de difusão ou difusividade de massa é um valor que representa a facilidade com que cada soluto em particular se move em um solvente determinado. É uma proporcionalidade constante entre o fluxo molar devido a difusão molecular e o gradiente na concentração de espécies (ou pela força condutora para a difusão). A difusividade é encontrada na lei de Fick e numerosas outras equações da físico-química, relacionadas com a difusão de matéria ou energia
É geralmente adequada para um dado par de espécies químicas. Para um sistema multicomponente, é recomendável para cada par de espécies no sistema.
Depende de três fatores:
- Tamanho e forma do soluto
- Viscosidade do solvente
- Temperatura
Quanto maior a difusividade (de uma substância em relação à outra), mais rápido elas difundem-se uma na outra.
Este coeficiente tem unidades no SI de m²/s (comprimento²/tempo).
Uma maneira simples de compreender o processo de difusão do Movimento Browniano é o passeio ao acaso em uma dimensão, que pode ser exemplificado pelo "problema do marinheiro bêbado".
Um marinheiro bêbado andando em linha reta, no eixo X, partindo de um poste dá sempre passos do mesmo tamanho. Tendo a possibilidade de caminhar para frente ou para trás. Qual será a sua distancia do poste após N passos?
Sendo a posição após n passos. temos então:
O que resulta em:
, mas
ou seja:
Sendo:
N - o número de passos dados
l - o tamanho dos passos
Na física, o coeficiente de difusão ou difusividade de massa é um valor que representa a facilidade com que cada soluto em particular se move em um solvente determinado. É uma proporcionalidade constante entre o fluxo molar devido a difusão molecular e o gradiente na concentração de espécies (ou pela força condutora para a difusão). A difusividade é encontrada na lei de Fick e numerosas outras equações da físico-química, relacionadas com a difusão de matéria ou energia
É geralmente adequada para um dado par de espécies químicas. Para um sistema multicomponente, é recomendável para cada par de espécies no sistema.
Depende de três fatores:
- Tamanho e forma do soluto
- Viscosidade do solvente
- Temperatura
Quanto maior a difusividade (de uma substância em relação à outra), mais rápido elas difundem-se uma na outra.
Este coeficiente tem unidades no SI de m²/s (comprimento²/tempo).
Índice
Dependência da temperatura do coeficiente de difusão
Tipicamente, o coeficiente de difusão de um composto é aproximadamente 10.000 vezes maior no ar que em água. Dióxido de carbono, por exemplo, no ar tem um coeficiente de difusão de 16 mm²/s, e em água seu coeficiente é 0,0016 mm²/s[1].
O coeficiente de difusão em sólidos a diferentes temperaturas é frequentemente encontrado e bem predito pela equação
onde
- é o coeficiente de difusão
- é o coeficiente de difusão máximo (a temperatura infinita)
- é a energia de ativação para difusão em dimensões de [energia (quantidade de substância)−1]
- é a temperatura em unidades de [temperatura absoluta] (kelvins ou graus Rankine)
- é a constante dos gases em dimensões de [energia temperatura−1 (quantidade de substância)−1]
Uma equação desta forma é conhecida como a equação de Arrhenius.
Uma dependência aproximada do coeficiente de difusão da temperatura em líquidos pode frequentemente ser encontrado usando a equação de Stokes-Einstein, a qual prevê que:
onde:
- T1 e T2 denota temperaturas 1 e 2, respectivamente
- D é o coeficiente de difusão (cm²/s)
- T é a temperatura absoluta (K),
- μ é a viscosidade dinâmica do solvente (Pa·s)
A dependência do coeficiente de difusão da temperatura para gases pode ser expressa usando-se a teoria de Chapman-Enskog (predições precisas na média em aproximadamentre 8%)[2]:
onde:
- 1 e 2 indexas os dois tipos de moléculas presentes na mistura gasosa
- T – temperatura (K)
- M – massa molar (g/mol)
- p – pressão (atm)
- – o diâmetro médio de colisão (os valores são tabulados[3]) (Å)
- Ω – um integral de colisão dependente da temperatua (os valores são tabulados[3] mas usualmente de ordem 1) (adimensional).
- D – coeficiente de difusão (o qual é expresso em cm2/s quando as outras magnitudes são expressas nas unidades dadas acima[2]).
Tipicamente, o coeficiente de difusão de um composto é aproximadamente 10.000 vezes maior no ar que em água. Dióxido de carbono, por exemplo, no ar tem um coeficiente de difusão de 16 mm²/s, e em água seu coeficiente é 0,0016 mm²/s[1].
O coeficiente de difusão em sólidos a diferentes temperaturas é frequentemente encontrado e bem predito pela equação
onde
- é o coeficiente de difusão
- é o coeficiente de difusão máximo (a temperatura infinita)
- é a energia de ativação para difusão em dimensões de [energia (quantidade de substância)−1]
- é a temperatura em unidades de [temperatura absoluta] (kelvins ou graus Rankine)
- é a constante dos gases em dimensões de [energia temperatura−1 (quantidade de substância)−1]
Uma equação desta forma é conhecida como a equação de Arrhenius.
Uma dependência aproximada do coeficiente de difusão da temperatura em líquidos pode frequentemente ser encontrado usando a equação de Stokes-Einstein, a qual prevê que:
onde:
- T1 e T2 denota temperaturas 1 e 2, respectivamente
- D é o coeficiente de difusão (cm²/s)
- T é a temperatura absoluta (K),
- μ é a viscosidade dinâmica do solvente (Pa·s)
A dependência do coeficiente de difusão da temperatura para gases pode ser expressa usando-se a teoria de Chapman-Enskog (predições precisas na média em aproximadamentre 8%)[2]:
onde:
- 1 e 2 indexas os dois tipos de moléculas presentes na mistura gasosa
- T – temperatura (K)
- M – massa molar (g/mol)
- p – pressão (atm)
- – o diâmetro médio de colisão (os valores são tabulados[3]) (Å)
- Ω – um integral de colisão dependente da temperatua (os valores são tabulados[3] mas usualmente de ordem 1) (adimensional).
- D – coeficiente de difusão (o qual é expresso em cm2/s quando as outras magnitudes são expressas nas unidades dadas acima[2]).
Dependência da pressão do coeficiente de difusão
Para autodifusão em gases a duas pressões diferentes (mas a mesma temperatura), a seguinte equação empírica tem sido sugerida:[2]
onde:
- P1 e P2 denotam pressões 1 e 2, respectivamente
- D é o coeficiente de difusão (m²/s)
- ρ é a densidade mássica do gás (kg/m3)
Para autodifusão em gases a duas pressões diferentes (mas a mesma temperatura), a seguinte equação empírica tem sido sugerida:[2]
onde:
- P1 e P2 denotam pressões 1 e 2, respectivamente
- D é o coeficiente de difusão (m²/s)
- ρ é a densidade mássica do gás (kg/m3)
Difusividade efetiva em meio poroso
O coeficiente de difusão efetiva[4] descreve a difusão através dos espaços dos poros de um meio poroso. Ele é macroscópico na natureza, porque não são poros individuais mas o espaço poroso inteiro que necessita ser considerado. O coeficiente de difusão efetiva para transporte através dos poros, De, é estimado como segue:
onde:
- D - coeficiente de difusão em gas ou líquido preenchendo os poros (m2s−1)
- εt - porosidade disponível para o transporte (adimensional)
- δ - constrictividade (adimensional)
- τ - tortuosidade (adimensional)
A porosidade disponível para o transporte é igual à porosidade total menos os poros que, devido ao seu tamanho, não são acessíveis às partículas de difusão, e menos becos sem saída e poros cegos (i.e., poros sem estar conectado com o resto do sistema de poros).
A constrictividade descreve o abrandamento da difusão por aumento da viscosidade em poros estreitos como resultado de uma maior proximidade com a parede de poros médios. É uma função do diâmetro dos poros e o tamanho das partículas em difusão.
Na análise de transferência de calor, difusividade térmica é a condutividade térmica dividida por densidade e capacidade específica de calor a pressão constante.[1] Mede a taxa de transferência de calor de um material do lado quente para o lado frio. Ele tem a unidade derivada SI de m² / s. A difusividade térmica é geralmente denotada , mas , [2], ,[3] e também são usados. A fórmula é:
onde:
- é condutividade termal (W/(m·K))
- é densidade (kg/m³)
- é capacidade de calor específica (J/(kg·K))
Juntos, podem ser considerados a capacidade de calor volumétrico (J/(m³·K)).
Como visto na equação do calor,[5]
- ,
uma maneira de visualizar a difusividade térmica é como a razão entre tempo derivado de temperatura e sua curvatura, quantificando a taxa na qual a concavidade da temperatura é "suavizada Fora". Em certo sentido, a difusividade térmica é a medida da inércia térmica.[6] Em uma substância com alta difusividade térmica, o calor se move rapidamente através dela porque a substância conduz calor rapidamente em relação à sua capacidade volumétrica de calor ("thermal bulk").
O coeficiente de difusão efetivo (também referido como o coeficiente de difusão aparente) de um difundente em difusão atômica de materiais sólidos policristalinos como ligas metálicas é muitas vezes representada como uma média ponderada do coeficiente de difusão de contorno de grão e o coeficiente de difusão de retículo.[1]
Difusão ao longo tanto do contorno de grão como do retículo cristalino podem ser modelados com uma equação de Arrhenius. A razão da energia de ativação da difusão de contorno de grão sobre a energia de ativação da difusão de retículo é normalmente 0,4 - 0,6, assim que a temperatura é reduzida, o componente de difusão do contorno de grão aumenta.[1] Aumentando-se a temperatura geralmente permite-se um aumento do tamanho de grão, e o componente da difusão por retículo aumenta com o aumento da temperatura, por isso muitas vezes a 0,8Tfusão (de uma liga), o componente do contorno de grão pode ser negligenciado.
O coeficiente de difusão efetiva[4] descreve a difusão através dos espaços dos poros de um meio poroso. Ele é macroscópico na natureza, porque não são poros individuais mas o espaço poroso inteiro que necessita ser considerado. O coeficiente de difusão efetiva para transporte através dos poros, De, é estimado como segue:
onde:
- D - coeficiente de difusão em gas ou líquido preenchendo os poros (m2s−1)
- εt - porosidade disponível para o transporte (adimensional)
- δ - constrictividade (adimensional)
- τ - tortuosidade (adimensional)
A porosidade disponível para o transporte é igual à porosidade total menos os poros que, devido ao seu tamanho, não são acessíveis às partículas de difusão, e menos becos sem saída e poros cegos (i.e., poros sem estar conectado com o resto do sistema de poros).
A constrictividade descreve o abrandamento da difusão por aumento da viscosidade em poros estreitos como resultado de uma maior proximidade com a parede de poros médios. É uma função do diâmetro dos poros e o tamanho das partículas em difusão.
Na análise de transferência de calor, difusividade térmica é a condutividade térmica dividida por densidade e capacidade específica de calor a pressão constante.[1] Mede a taxa de transferência de calor de um material do lado quente para o lado frio. Ele tem a unidade derivada SI de m² / s. A difusividade térmica é geralmente denotada , mas , [2], ,[3] e também são usados. A fórmula é:
onde:
- é condutividade termal (W/(m·K))
- é densidade (kg/m³)
- é capacidade de calor específica (J/(kg·K))
Juntos, podem ser considerados a capacidade de calor volumétrico (J/(m³·K)).
Como visto na equação do calor,[5]
- ,
uma maneira de visualizar a difusividade térmica é como a razão entre tempo derivado de temperatura e sua curvatura, quantificando a taxa na qual a concavidade da temperatura é "suavizada Fora". Em certo sentido, a difusividade térmica é a medida da inércia térmica.[6] Em uma substância com alta difusividade térmica, o calor se move rapidamente através dela porque a substância conduz calor rapidamente em relação à sua capacidade volumétrica de calor ("thermal bulk").
O coeficiente de difusão efetivo (também referido como o coeficiente de difusão aparente) de um difundente em difusão atômica de materiais sólidos policristalinos como ligas metálicas é muitas vezes representada como uma média ponderada do coeficiente de difusão de contorno de grão e o coeficiente de difusão de retículo.[1]
Difusão ao longo tanto do contorno de grão como do retículo cristalino podem ser modelados com uma equação de Arrhenius. A razão da energia de ativação da difusão de contorno de grão sobre a energia de ativação da difusão de retículo é normalmente 0,4 - 0,6, assim que a temperatura é reduzida, o componente de difusão do contorno de grão aumenta.[1] Aumentando-se a temperatura geralmente permite-se um aumento do tamanho de grão, e o componente da difusão por retículo aumenta com o aumento da temperatura, por isso muitas vezes a 0,8Tfusão (de uma liga), o componente do contorno de grão pode ser negligenciado.
Modelagem
O coeficiente de difusão efetivo pode ser modelao usando a equação de Hart quando somente o contorno de grão e a difusão de retículo são dominantes:
- Dgb Dl.
onde
- coeficiente de difusão efetivo.
- Dgb = coeficiente de difusão de contorno de grão.
- Dl = coeficiente de difusão de retículo .
- .δ
- valor baseado na forma do grão, 1 para grãos paralelos, 3 para grãos quadrados.
- tamanho médio de grão.
- δ largura do limite de grão, muitas vezes assumido como sendo de 0,5 nm.
Difusão de contorno de grão é significativa em metais de retículo cúbico de face centrada (CFC) abaixo de cerca de 0,8 Tmelt (Absoluto). Deslocamentos de linha e outros defeitos cristalográficos podem tornar-se significativos abaixo de ~0.4 Tmelt em metais CFC.
O coeficiente de difusão efetivo pode ser modelao usando a equação de Hart quando somente o contorno de grão e a difusão de retículo são dominantes:
- Dgb Dl.
onde
- coeficiente de difusão efetivo.
- Dgb = coeficiente de difusão de contorno de grão.
- Dl = coeficiente de difusão de retículo .
- .δ
- valor baseado na forma do grão, 1 para grãos paralelos, 3 para grãos quadrados.
- tamanho médio de grão.
- δ largura do limite de grão, muitas vezes assumido como sendo de 0,5 nm.
Difusão de contorno de grão é significativa em metais de retículo cúbico de face centrada (CFC) abaixo de cerca de 0,8 Tmelt (Absoluto). Deslocamentos de linha e outros defeitos cristalográficos podem tornar-se significativos abaixo de ~0.4 Tmelt em metais CFC.
Coeficiente de difusão de retículo
Coeficiente de difusão de retículo, é o coeficiente de difusão relacionado à difusão de retículo ou pelo ou por retículo, em algumas citações (também chamada difusão de volume) refere-se à difusão atômica no interior do retículo cristalino [1][2][3]. Difusão interior do retículo do cristal ocorre tanto por mecanismos intersticiais ou substitucionais e refere-se à difusão de retículo. Na difusão de retículo intersticial, um difundente (tal como o carbono nas ligas de ferro), irá difundir-se entre a estrutura do retículo de outro elemento cristalino. Em difusão de retículo substitucional (auto-difusão por exemplo), o átomo pode somente mover-se por substituir o lugar de outro átomo. Difusão de retículo substitucional é frequentemente contingenciada com a disponibilidade de pontos vagos em todo o retículo cristalino. partículas em difusão de ponto a ponto vago pela rapidamente, essencialmente ao aleatoriamente saltando (difusão aos saltos). Uma vez que a prevalência de ponto vagos aumenta de acordo com a equação de Arrhenius, a taxa de difusão no estado sólido cristalino aumenta com a temperatura. Para um único átomo em um cristal sem defeitos, o movimento pode ser descrito pelo modelo da "marcha randômica ou aleatória".
Coeficiente de difusão de retículo, é o coeficiente de difusão relacionado à difusão de retículo ou pelo ou por retículo, em algumas citações (também chamada difusão de volume) refere-se à difusão atômica no interior do retículo cristalino [1][2][3]. Difusão interior do retículo do cristal ocorre tanto por mecanismos intersticiais ou substitucionais e refere-se à difusão de retículo. Na difusão de retículo intersticial, um difundente (tal como o carbono nas ligas de ferro), irá difundir-se entre a estrutura do retículo de outro elemento cristalino. Em difusão de retículo substitucional (auto-difusão por exemplo), o átomo pode somente mover-se por substituir o lugar de outro átomo. Difusão de retículo substitucional é frequentemente contingenciada com a disponibilidade de pontos vagos em todo o retículo cristalino. partículas em difusão de ponto a ponto vago pela rapidamente, essencialmente ao aleatoriamente saltando (difusão aos saltos). Uma vez que a prevalência de ponto vagos aumenta de acordo com a equação de Arrhenius, a taxa de difusão no estado sólido cristalino aumenta com a temperatura. Para um único átomo em um cristal sem defeitos, o movimento pode ser descrito pelo modelo da "marcha randômica ou aleatória".
Comentários
Postar um comentário